Activity 3.5: Plant Phenology Data Analysis

Grades 5 – 6

Description:
Part 1: Graphing Historical Phenology Data:
Students will graph plant phenology data and draw conclusions about how climate and climate change affect plant phenology.

Part 2: Project BudBurst and NASA Green-up Data:
Students will compare historical data and their BudBurst data, to NASA Normalized Difference Vegetation Index (NDVI) visualization and graphs. Students will discuss how BudBurst can contribute to our understanding of plants responses to climate change.

Total Time: Three 45-minute class periods

NOTE: If having students use the MY NASA DATA website is too complicated or time consuming, you can generate the NDVI visualizations and graphs ahead of time, and make copies for students to use as they complete the activity.

National Science Education Standards:
C3.A All organisms must be able to obtain and use resources, grow, reproduce, and maintain stable internal conditions while living in a constantly changing external environment.
5D/E4 Changes in an organism's habitat are sometimes beneficial to it and sometimes harmful.

AAAS Benchmarks:
5D/E4 Changes in an organism's habitat are sometimes beneficial to it and sometimes harmful.
5D/E1 For any particular environment, some kinds of plants and animals thrive, some do not live as well, and some do not survive at all.
5F/H6c When an environment, including other organisms that inhabit it changes, the survival value of inherited characteristics may change.

Guiding Questions
• How does plant phenology in the Concord data sets compare to current plant phenology? What does that tell us about changing climates?
• How does NASA data and satellite imagery help us understand and interpret the phenology data that we collected through Project BudBurst?
• How are plants responding to changing climates?
Assessments
• Student graphs of historical phenology data
• Student handouts and analysis of NASA NDVI data

Part 1: Graphing Historical Phenology Data

Procedure
1. Remind students of the two naturalists they met in the last activity, Richard Primac and Abraham Miller-Rushing. Tell students they are going to have a chance to use the actual data they collected to see whether there have been changes in when plants bloom from 1852 until now. Students are provided with first flower data for five species of plants. Hand out the “Plant Phenology Data Analysis Graphing” worksheet. Common names and scientific names of the plants are listed, as are first flowering dates between the years of 1852 and 2006.

2. Prediction, Part 1.: Have students make predictions about what patterns they would expect to see if they were to graph the first flowering dates. You may have students share their predictions with a partner or with the class.

3. Prediction, Part 2.: Draw students’ attention to the weather data in Figure 1. This data was collected from Blue Hill Meteorological Observatory, likely the closest weather station to Concord. These graphs show a shift of about 2 degrees Celsius in mean temperature between the years 1852 and 2006. Have students modify their predictions from part 1 based on the temperature graph. Again, you may have students share their information with a partner or with the class. Students may suggest that since temperature is going up, first flowering date will be earlier in the year.

4. Prediction, Part 3.: First flowering dates can be influenced by many things, including day length (the number of hours of light vs. dark) and temperature. Students should understand that if first flowering date is primarily influenced by day length, then first flowering date should not change over time, as the number of hours of light vs. dark in a day does not change from year to year. However, if the first flowering date is influenced by temperature, than it will change from year to year, and since figure 1 shows an increase in temperature in Concord, then first flowering dates should be earlier than they were in 1852.

5. Next, students will graph the data. The amount of instruction you provide will depend on how much experience they have graphing. You may want to have groups of students each work on one of the five species. Then, groups can draw their graph on an overhead slide, or create a graph in Excel to share their graphs with the class. Or you can have students graph all species on the same graph in different colors. Several things to note:
 • Time with be on the x axis and first flowering date on the y axis.
 • First flowering date is shown in days of the year, where January first is day 1. Several practice problems to determine the corresponding calendar date are provided. This is just for students’ knowledge, as graphing will be easier with the data in the form shown. (Day 111 = April 20 in a leap year and April 21 in a non-leap year)
 • There are some large gaps in the data. Students will visualize the patterns better if they do not graph the large spans of time for which there are no data (1859–77 and
1904–2003). This can be shown with the symbol “\" on the x axis as shown on the sample graph below.

1. Once students have completed their graph (along with a title and axis labels) and data sheet, bring them back together for a class discussion. (Remember, if the graph line is decreasing, this means that the first flowering date is earlier in the year.)
 • Did students see the pattern they expected? How does the pattern relate to the temperature data from Concord?
 • Do you think the trend in the Concord data would be the same for BudBurst species? Explain.
 • How might you figure out whether your species followed the same trend? What kind of experiment could you design? What kind of data would you need to collect? Over how long?
 • How do you think the first flower data for Concord and for your own observations compare to overall bloom times for all species in each location?

2. Tell students that in Part 2, they will look at satellite imagery from NASA that will help them determine whether the recent Concord data, and their own BudBurst observations, are consistent with the bloom times of other plants at these locations.

Part 1 Extensions:
• Students can research their plant species and find out some background information, including the plant’s duration (annual, perennial); growth form (grass, forb*, shrub, tree); distribution (where it grows); uses of the plant (medicinal, cultural, etc.); and photographs.
• Many interesting articles have been written about the Concord phenology data. Students can read these articles individually or as a class. See the “For more information” section below.
• Additional plant phenology data sets (including more than 1000 species from the Concord study) can be found on the National Phenology Network’s website: http://www.usanpn.org/results/dataset-list.
For more information:

- Alfred Hosmer information from the Concord Library: http://www.concordlibrary.org/scollect/fin_aids/Hosmer_Botanical.htm
- Pennie Logemann collected 30 years of daily notes of the flowering phases of 250 plants in her woodland garden that were used by Boston University researchers, along with Henry David Thoreau's similar nineteenth-century plant notes from Concord, for evidence of climate change effects. http://www.legacy.com/obituaries/wickedlocal-concord/obituary.aspx?n=pennie-logemann&pid=154088667&fhid=9284
- Richard Primack’s website at Boston University: http://people.bu.edu/primack/

Part 2: Project BudBurst and NASA Green-up Data

NOTES: There are two ways you can implement this activity depending on how much experience your students have working with data and computers, and how much time you have to devote to the activity. Students will be using the same NASA interface, MY NASA DATA, as they did in Activity 2.4: Climate Change Around the World to generate graphs of temperature, precipitation, and cloud cover, to generate images and graphs of the Normalized Difference Vegetation Index (NDVI).

NDVI is a measure of the visible and near infrared light reflected by the land surface back into space. By measuring these wavelengths, it is possible, using an algorithm called a "Vegetation Index" to quantify the concentrations of green leaf vegetation around the globe. By combining the daily Vegetation Indices into 8-, 16-, or 30-day composites, scientists can create detailed maps of Earth’s green vegetation density that identify where plants are thriving and where they are under stress (i.e., due to lack of water). Students will be generating these visualizations using the MY NASA DATA website.

After going over what the maps and graphs represent as a class, you can either have students generate their own maps and graphs (student instructions are included below) or generate the required Normalized Difference Vegetation Index (NDVI) images and graphs for students. You may then print them out and provide a set to each student group that they can use to answer the questions on the data sheet as a group or you can project them on the overhead and answer the questions as a class. You will need to generate a graph and image of NDVI data for the location where you collected your BudBurst data. Students will be working with 2009 data because that is the most recent fully year of data in the system at the writing of this curriculum. If newer data is
available, students should use the most recent data. A graph of the NDVI for Concord, Massachusetts, and an image of the NDVI index for the months of February, March, April, and May are included at the end of the activity.

Pre-Activity:
- Review how NASA uses visible and near infrared light reflected by plants to calculate the Normalized Difference Vegetation Index (NDVI). There is a good description at: http://earthobservatory.nasa.gov/Features/MeasuringVegetation/
- Practice using MyNasaData to generate NDVI maps and graphs (http://mynasadata.larc.nasa.gov/las/)
- Print out and make copies of graphs and maps if you plan to have students work from those rather than generate their own.

Procedure:
1. Project the class BudBurst site and project the data history for your species and data collection site(s) using the BudBurst Data Viewer, so the data is visible as your students enter the classroom.

2. Begin the class with a discussion of when the first bloom dates were for the BudBurst data the class has collected. Compare your data to the first bloom dates for the Concord data. Discussion questions might include:
 a. Are the dates close to each other?
 b. What factors might determine any similarity or difference in the dates (answers might include: different weather each year, different location [latitude/longitude] or elevation, different plant species)

3. Have students record the dates of first flower for their BudBurst species on their data sheet (or you can print out or download their data from the BudBurst Data Viewer), along with the dates of first flower for the Concord species they graphed in Part 2.

4. Tell students they will be comparing their Project Budburst data and the Concord data to data collected by NASA satellites that let us draw conclusions about how much vegetation is present in a location. Satellites can measure how much sunlight is being absorbed by plants on the surface of Earth. So if lots of sunlight is being absorbed, it is a good indicator of how much vegetation is present in a location. If lots of sunlight is being absorbed, that probably means that there are many plants present. On the other hand, if little energy is absorbed, there are few or no plants present. You might want to note this on the board, so students remember what NDVI represents while they are looking at their maps. Write on the board: \[\text{NDVI} = \frac{\text{amount of sunlight absorbed by plants}}{\text{maximum possible amount of sunlight absorbed}} \]

5. Project one of the sample NASA NDVI maps, and discuss what the color key represents. (The color scale represents the amount of light absorbed by the plants in that region. White indicates there is no light absorption by plants. At one end of the scale, purple indicates very low light absorption and as you progress through the colors of the rainbow to red, it indicates increasing light absorption. Red represents the maximum 100 percent light absorption.) Discuss what this means in terms of vegetation. Discussion questions might include:
a. Why do we see purple and blue (low vegetation) in many parts of the United States in January? (It’s winter, so there is little plant growth in the northern areas.)
b. What about the places in Africa near the equator that are purple/blue/green? Why might there be low vegetation there? (Desert, drought, etc.)
c. What about Australia? It’s in the southern hemisphere, so it should be summer there.

6. Students should understand that NDVI doesn’t only vary by season, but also by climate and geography (temperature, precipitation levels, and elevation). You can either go over both maps and make the comparison between winter and summer as a class, or let students figure out the differences as they answer the questions on their data sheets.

7. Demonstrate how the website works by walking through the first example, and projecting it using an LCD projector. Answer any questions students have. Depending on the ability level of your students, you may want to complete the entire data sheet as a class, or break students into groups to complete the data sheet after the first example.
TIME: 16-JUL-2009 12:00

DATA SET: Biosphere

Subsampled 3 in X

Monthly Normalized Difference Vegetation Index (MISR) (dimensionless)
Sample Graphs

LONGITUDE: 87.3W (-87.3)
LATITUDE: 41.8N

Chicago, IL

DATA SET: Biosphere

Monthly Normalized Difference Vegetation Index (MISR) (dimensionless)

LONGITUDE: 71.3W (-71.3)
LATITUDE: 42.3N

Concord, MA

DATA SET: Biosphere

Monthly Normalized Difference Vegetation Index (MISR) (dimensionless)
Part 1: Graphing Historical Phenology Data

Table 1: First flowering dates of five plant species in the Concord, MA, area between 1852 and 2006. First flowering dates are shown in days of the year, where January first is day 1.

<table>
<thead>
<tr>
<th>Plant common name</th>
<th>Highbush blueberry</th>
<th>Canada mayflower</th>
<th>Larger blue flag</th>
<th>Rhodora</th>
<th>Downy yellow violet</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plant scientific name</td>
<td>Vaccinium corymbosum</td>
<td>Maianthemum canadense</td>
<td>Iris versicolor</td>
<td>Rhododendron canadense</td>
<td>Viola pubescens</td>
</tr>
<tr>
<td>1852</td>
<td>141</td>
<td>163</td>
<td>139</td>
<td>146</td>
<td></td>
</tr>
<tr>
<td>1853</td>
<td>131</td>
<td>150</td>
<td>135</td>
<td>136</td>
<td></td>
</tr>
<tr>
<td>1854</td>
<td>135</td>
<td>158</td>
<td>136</td>
<td>147</td>
<td></td>
</tr>
<tr>
<td>1855</td>
<td>134</td>
<td>161</td>
<td>138</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1856</td>
<td>138</td>
<td>165</td>
<td>138</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1857</td>
<td>138</td>
<td>157</td>
<td>138</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1858</td>
<td>135</td>
<td>161</td>
<td>137</td>
<td>136</td>
<td></td>
</tr>
<tr>
<td>1878</td>
<td>134</td>
<td>177</td>
<td>125</td>
<td>137</td>
<td></td>
</tr>
<tr>
<td>1888</td>
<td>150</td>
<td>162</td>
<td>144</td>
<td>145</td>
<td></td>
</tr>
<tr>
<td>1889</td>
<td>125</td>
<td>146</td>
<td>128</td>
<td>125</td>
<td></td>
</tr>
<tr>
<td>1890</td>
<td>131</td>
<td>151</td>
<td>131</td>
<td>124</td>
<td></td>
</tr>
<tr>
<td>1891</td>
<td>122</td>
<td>151</td>
<td>130</td>
<td>120</td>
<td></td>
</tr>
<tr>
<td>1892</td>
<td>129</td>
<td>155</td>
<td>143</td>
<td>131</td>
<td></td>
</tr>
<tr>
<td>1893</td>
<td>141</td>
<td>162</td>
<td>140</td>
<td>140</td>
<td></td>
</tr>
<tr>
<td>1894</td>
<td>125</td>
<td>147</td>
<td>125</td>
<td>119</td>
<td></td>
</tr>
<tr>
<td>1895</td>
<td>132</td>
<td>148</td>
<td>132</td>
<td>125</td>
<td></td>
</tr>
<tr>
<td>1896</td>
<td>130</td>
<td>146</td>
<td>131</td>
<td>131</td>
<td></td>
</tr>
<tr>
<td>1897</td>
<td>122</td>
<td>143</td>
<td>129</td>
<td>129</td>
<td></td>
</tr>
<tr>
<td>1898</td>
<td>121</td>
<td>157</td>
<td>135</td>
<td>128</td>
<td></td>
</tr>
<tr>
<td>1899</td>
<td>127</td>
<td>155</td>
<td>134</td>
<td>127</td>
<td></td>
</tr>
<tr>
<td>1900</td>
<td>138</td>
<td>158</td>
<td>141</td>
<td>138</td>
<td></td>
</tr>
<tr>
<td>1901</td>
<td>128</td>
<td>160</td>
<td>135</td>
<td>134</td>
<td></td>
</tr>
<tr>
<td>1902</td>
<td>110</td>
<td>150</td>
<td>124</td>
<td>124</td>
<td></td>
</tr>
<tr>
<td>1903</td>
<td>116</td>
<td>123</td>
<td>123</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2004</td>
<td>120</td>
<td>155</td>
<td>129</td>
<td>127</td>
<td></td>
</tr>
<tr>
<td>2005</td>
<td>116</td>
<td>158</td>
<td>126</td>
<td>113</td>
<td></td>
</tr>
<tr>
<td>2006</td>
<td>111</td>
<td>129</td>
<td>125</td>
<td>111</td>
<td></td>
</tr>
</tbody>
</table>
Prediction, Part 1: If you were to graph the first flowering date of these five plant species, what pattern would you expect to see? Why?

Figure 1: Temperatures near Concord, Massachusetts, from 1852 to 2006.

(From Miller-Rushing and Primak, 2008)

Prediction, Part 2: Describe the graph in Figure 1, above. Focus on just the top curve, which shows average (mean) yearly temperatures for Concord. Use the information contained in this graph to refine the prediction you made in Part 1.
Prediction, Part 3: First flowering date can be influenced by many things, including day length (the number of hours of light vs. dark) and temperature.

a) If the first flowering date for your species were primarily influenced by day length, how would you expect the date of first flowering to change between 1852 and 2006?

b) If the first flowering date for your species were primarily influenced by temperature how would you expect the date of first flowering to change between 1852 and 2006?

Graphing the Data

1. Graph the date of first flower for the species you have chosen or been assigned by your teacher. Write the scientific name and the common name of your species below.

 Scientific Name: ________________________________

 Common Name: ________________________________

2. Remember, the first flowering dates are shown as numbers, with Jan 1 being the number 1. Just for practice, determine the calendar date of day number 111 using a calendar.

 Write the date here: ________________________________

3. Label the X and Y axes to reflect the data you are graphing.
After you have completed your graph, answer the questions below:

1) Describe the pattern you see in the data. Did first flowering dates for your species change between 1852 and 2006?

2) Did first flowering days for your species get earlier or later? Why do you think this is the case?

3) Do you think the first flowering date for your species was influenced primarily by day length, temperature, or some other factor? Explain your answer.

4) Do you think the trend you see in your species will be the same with the BudBurst species you are observing? Explain how you might figure out whether your species followed the same trend.

5) **Brainstorm:** What are benefits and risks to plants of flowering earlier in the season?
TEACHER ANSWER KEY:

Part 1: Graphing Historical Phenology Data

Prediction, Part 1: If you were to graph the first flowering date of these five plant species, what pattern would you expect to see? Why?

Figure 1: Temperatures near Concord, Massachusetts, from 1852 to 2006.

![Temperature Chart](image)

Fig. 1. Temperatures at Blue Hill Meteorological Observatory (33 km southeast of Concord, Massachusetts, USA) from 1852 to 2006. The upper line and open circles represent mean annual temperatures. The lower line and solid squares represent mean monthly temperatures in January, April, and May, temperatures that were highly correlated with flowering times for many species. Horizontal lines show long-term means for each (annual = 8.3°C; Jan, Apr, May = 5.1°C). Circles and squares show years with flowering data.

(From Miller-Rushing and Primak, 2008)

Prediction, Part 2: Describe the graph in Figure 1, above. Focus on just the top curve, which shows average (mean) yearly temperatures for Concord. Use the information contained in this graph to refine the prediction you made in Part 1.
Name ____________________________ Teacher/Class ____________________________

Prediction, Part 3: First flowering date can be influenced by many things, including day length (the number of hours of light vs. dark) and temperature.

c) If the first flowering date for your species were primarily influenced by day length, how would you expect the date of first flowering to change between 1852 and 2006?

d) If the first flowering date for your species were primarily influenced by temperature, how would you expect the date of first flowering to change between 1852 and 2006?

Graphing the Data

1. Graph the date of first flower for the species you have chosen or been assigned by your teacher. Write the scientific name and the common name of your species below.

 Scientific Name: ________________________________

 Common Name: ________________________________

2. Remember, the first flowering dates are shown as numbers, with Jan 1 being the number 1. Just for practice, determine the calendar date of day number 111 using a calendar.

 Write the date here: ________________________________

3. Label the X and Y axes to reflect the data you are graphing.
Name ______________________________ Teacher/Class _______________________

After you have completed your graph, answer the questions below:

6) Describe the pattern you see in the data. Did first flowering dates for your species change between 1852 and 2006?

7) Did first flowering days for your species get earlier or later? Why do you think this is the case?

8) Do you think the first flowering date for your species was influenced primarily by day length, temperature, or some other factor? Explain your answer.

9) Do you think the trend you see in your species will be the same with the BudBurst species you are observing? Explain how you might figure out whether your species followed the same trend.

10) Brainstorm: What are benefits and risks to plants of flowering earlier in the season?
Part 2: Project Budburst and NASA Green-up Data
How to create maps and graphs using MY NASA DATA Live Access Server

Part 2.1: Generate four comparison maps of the **monthly normalized difference vegetation index** (NDVI) index for 2009 for the United States by following the instructions below:

2. Click in the checkbox on the **UPDATE PLOT** button. This will ensure that when you make a new selection, your map or graph will update automatically.
3. Click on the **CHOOSE DATASET** button.
4. Click on **BIOSPHERE**.
5. Choose **MONTHLY NORMALIZED DIFFERENCE VEGETATION INDEX (MISR)**.
6. Click on the +/- magnifying glass and the globe to zoom in and out on the world map.
7. Click on the orange box in the map menu bar then select a box encompassing the continental United States.
8. Using the drop-down menu, select the time **FEB 2009**, the map will update automatically.
9. Click the **COMPARE** button in the middle of the top menu bar. You will now see four identical maps. Under each map, you can select the month and year.
10. Click the **UPDATE PLOTS** button on the top menu bar. This will update the maps to reflect your changes.
11. Compare the maps to the dates of your BudBurst/First Leaf data and to that of the Concord data, and answer the questions on your datasheet. Once you have answered the questions, move on to Part 3.2.
Part 2.2 Generate a graph of monthly changes in NDVI for your city and for Concord, Massachusetts, using the entire NASA data set from 2002 through the most recent month/year available.

1. Click on the **CHOOSE DATASET** button
2. Click on **BIOSPHERE**
3. Choose **MONTHLY NORMALIZED DIFFERENCE VEGETATION INDEX (MISR)**.
4. Under **LINE PLOTS**, click the **TIME SERIES** option.
5. Enter your latitude and longitude into the top and left hand text boxes under the world map (you can also drag and drop the orange circle on your city).
6. Make sure the **DATE RANGE** covers all the available data (choose the first month/year available for the first date, and the most recent month/year available for the second date).
7. A graph of the monthly NDVI for your location will be generated automatically in the right window (if it does not generate automatically, make sure that you have checked the **UPDATE PLOT** checkbox).
8. Right click on the graph to save the image. Name it “your city” NDVI.jpg
9. Follow Steps 5-8 to generate and save the graph of the NDVI data for Concord, Massachusetts.
Part 2: Project Budburst and NASA Green-up Data

1. In the spaces below, record the first flower or first leaf date of your BudBurst species from the website and Concord, Massachusetts, species that you graphed in Part 2:

 Concord, MA Species: __
 First flower/leaf date(s): __
 Latitude: _____________________ Longitude: _______________________

 BudBurst Species: ____________________________________ First flower/leaf date: __________
 Your City and State: ______________________________
 Latitude: _____________________ Longitude: _______________________

 A. Look at all four maps. Which month shows the lowest amount of vegetation? Which month shows the highest? Based on what you know about plants and climate, explain your answers.

 B. Where in the United States is there the most plant growth overall (over all four months)? Where is there the least? Based on what you know about plants and climate, explain your answers.
C. Compare the first bloom dates for your budburst species and your Concord, Massachusetts, species to the four maps. Do the bloom dates appear to fit into the general trends of plant growth over the four-month period? Explain your answer.

3. Follow the instructions outlined on the sheet How to Create Maps and Graphs using MY NASA DATA Live Access Server,” Part 2.2, to generate graphs of monthly changes in NDVI for the city where your school is located and for Concord using the entire NASA data set from 2002 through the most recent month and year available. Then answer Questions A-G below.

A. Look at the labels on the x and y-axes. Explain what the labels mean. (Hint: look at the scale on the right side of the maps you generated.)

B. Look at the Concord graph and fill in the following information:
 i. Highest amount of light absorbed __________________________
 ii. Month/Year of the highest amount of light absorbed __________________
 iii. Lowest amount of light absorbed __________________________
 iv. Month/Year of the lowest amount of light absorbed ________________

C. Do the same for the graph of your city:
 i. Highest amount of light absorbed __________________________
 ii. Month/Year of the highest amount of light absorbed ______________
 iii. Lowest amount of light absorbed __________________________
 iv. Month/Year of the lowest amount of light absorbed ______________

D. Compare the two graphs and your answers to Questions B and C. Do you see any patterns in the graphs? Are they similar? Describe any patterns you see.
E. Look at your Concord, Massachusetts, species data on the phenology data table. What date did your plant bloom (remember you will need to convert the day of the year back to the month/date)? How does the bloom time of your plant species compare to the overall monthly changes in vegetation shown on the Concord graph?

F. Look at your city’s graph. Although the graph does not continue through 2011–12, based on the pattern, explain how the bloom time of your BudBurst plant compares to the overall monthly changes in vegetation.

G. Based on what you know about climate change, what changes might you expect to see in both the maps and the graphs in the future?
TEACHER ANSWER KEY:
Part 2: Project BudBurst and NASA Green-up Data

1. In the spaces below, record the first flower or first leaf date of your BudBurst species from the website and Concord, Massachusetts species that you graphed in Part 2:

Concord, MA Species: ________________________________

First flower/leaf date(s): ________________________________

Latitude: __________________ Longitude: __________________

BudBurst Species: _____________________ First flower/leaf date: _________

Your City and State: ________________________________

Latitude: __________________ Longitude: __________________

A. Look at all four maps – which month shows the lowest amount of vegetation? Which month shows the highest? Based on what you know about plants and climate, explain your answers.

B. Where in the United States is there the most plant growth overall (over all four months)? Where is there the least? Based on what you know about plants and climate, explain your answers.
C. Compare the first bloom dates for your budburst species and your Concord, Massachusetts, species to the four maps. Do the bloom dates appear to fit into the general trends of plant growth over the four-month period? Explain your answer.

4. Follow the instructions outlined on the sheet How to Create Maps and Graphs using MY NASA DATA Live Access Server,” Part 2.2, to generate graphs of monthly changes in NDVI for the city where your school is located and for Concord using the entire NASA data set from 2002 through the most recent month and year available. Then answer Questions A-G below.

A. Look at the labels on the x and y-axes. Explain what the labels mean. (Hint: look at the scale on the right side of the maps you generated.)

B. Look at the Concord graph and fill in the following information:
 ii. Highest amount of light absorbed __________________________
 iii. Month/Year of the highest amount of light absorbed _________________
 iv. Lowest amount of light absorbed __________________________
 v. Month/Year of the lowest amount of light absorbed _________________

C. Do the same for the graph of your city:
 vi. Highest amount of light absorbed __________________________
 vii. Month/Year of the highest amount of light absorbed _________________
 viii. Lowest amount of light absorbed __________________________
 ix. Month/Year of the lowest amount of light absorbed _________________

D. Compare the two graphs and your answers to Questions B and C. Do you see any patterns in the graphs? Are they similar? Describe any patterns you see.
E. Look at your Concord, Massachusetts species data on the phenology data table. What date did your plant bloom (remember you will need to convert the day of the year back to the month/date)? How does the bloom time of your plant species compare to the overall monthly changes in vegetation shown on the Concord graph?

F. Look at your city’s graph. Although the graph does not continue through 2011–12, based on the pattern, explain how the bloom time of your BudBurst plant compares to the overall monthly changes in vegetation.

G. Based on what you know about climate change, what changes might you expect to see in both the maps and the graphs in the future?
LONGITUDE: 71.3W
LATITUDE: 42.3N

Concord, MA

DATA SET: Biosphere

Monthly Normalized Difference Vegetation Index (MISR) (dimensionless)